СПОСОБ ОПРЕДЕЛЕНИЯ ВОКСЕЛЬНОГО И СУБВОКСЕЛЬНОГО ПОРОВОГО ПРОСТРАНСТВА МЕТОДОМ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С КОНТРАСТОМ

Евсеев Федор Александрович; Иванов Иван Александрович

Научно-аналитический центр рационального недропользования им. В.И. Шпильмана, г. Ханты-Мансийск E-mail: fedor_evseev@rambler.ru

ЧЕРТЕЖИ И СХЕМЫ

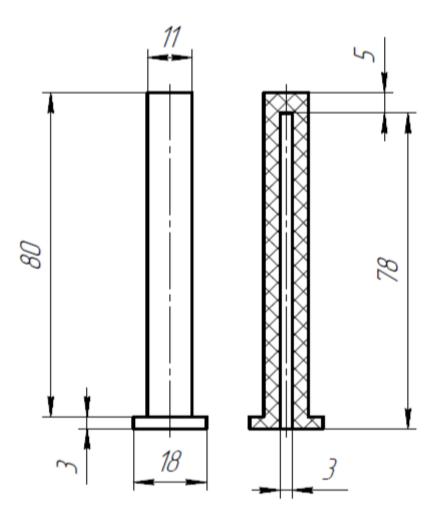


Рисунок 1 – Пример чертежа барокамеры, рассчитанный под диаметр образцов до 4 мм.

№ п/п	особенности моделей													
1	Барокамеры (рис. 1) изготовлены из тонких рентгенопрозрачных материалов.													
2	Масса конструкции не превышает 1 кг, что позволяет удобно разместить барокамеру на кернодержателе томографа.													
3	Диаметры образцов керна, доступные для сканирования, составляют 2-2,5 мм; 4 мм и 8 мм.													
4	Барокамеры рассчитаны на рабочее давление до 40 бар как в условиях сканирования газом, так и в жидких средах.													
5	Миниатюрность моделей и простота механизмов подсоединения позволяют удобно разместить барокамеры в томографе, не препятствуя процессу сканирования.													

Система (рис. 2) включает в себя газовый баллон (1), в котором под давлением содержится рентгеноконтрастный газ, например, ксенон, расположенные последовательно два компрессора: низкого и высокого давления (3), вакуумный насос (6) и нагревательные элементы (7), использующиеся для удаления воздуха и влаги из внутренней среды измерительной ячейки (8), в которую помещается анализируемый образец геологического происхождения (10). Система дополняется манометрами (2), трехходовыми кранами (4), вакуумметром (5), и связующими всю систему медными трубками с внутренним диаметром 1 мм (9), по которым циркулирует газ.

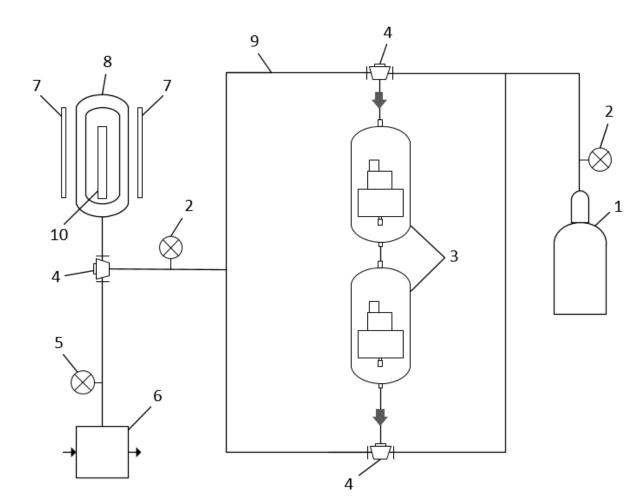
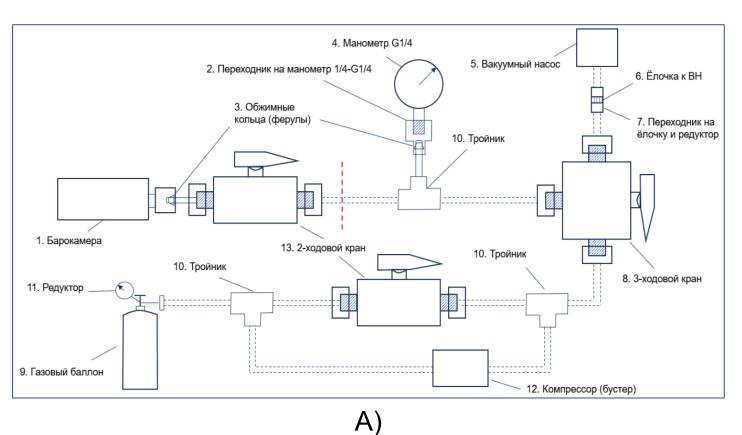



Рисунок 2 – Схема системы рекуперации отработанного рентгеноконтрастного газа.

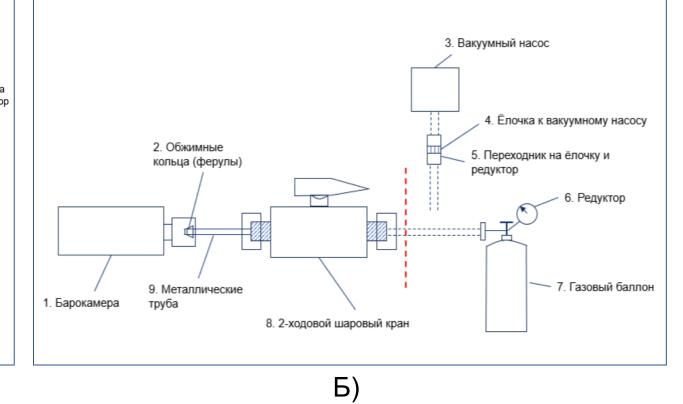


Рисунок 3 — Схемы элементов подсоединения «барокамера-томограф-ксенон»: с рекуперацией (А) и без рекуперации (Б) рентгеноконтрастного газа.

РЕНТГЕНОКОНТРАСТНЫЕ ГАЗЫ

			Sulfur hexafluoride (SF6)														
Temperatu e (C)	r Pressure (atm)	Density (g/ml)	Volume (ml/g)	Phase	Temperat	Pressure (atm)	Density (g/ml)	Volume (ml/g)	Phase	-		•	— >	Kenon —S	Sulfur hexafluor	ide	
25	0	0	infinite	vapor	25	0	0	infinite	vapor								
25	5	0,027573	36,267	vapor	25	5	0,031716	31,53	vapor	- 2							
25	10	0,05678	17,612	vapor	25	10	0,068185	14,666	vapor	-							
25	15	0,087894	11,377	vapor	25	15	0,11198	8,9305	vapor	-							
25	20	0,12127	8,2462	vapor	25	20	0,1692	5,9103	vapor	1.5	5						
25	25	0,15737	6,3546	vapor	25	23,326	0,2244	4,4562	vapor								
25	30	0,19682	5,0808	vapor	25	23,326	1,3402	0,74616	liquid	m/g)							
25	35	0,24053	4,1576	vapor	25	25	1,3482	0,74173	liquid								
25	40	0,28981	3,4506	vapor	25	30	1,3691	0,73038	liquid	Density							
25	45	0,34675	2,8839	vapor	25	35	1,3869	0,72102	liquid	- Ш							
25	50	0,41501	2,4096	vapor	25	40	1,4025	0,71301	liquid	-							
25	55	0,50185	1,9926	vapor	25	45	1,4164	0,70599	liquid	0.5	5						
25	60	0,6257	1,5982	vapor	25	50	1,4291	0,69974	liquid	-							
25	60	0,6257	1,5982	supercritical	25	55	1,4407	0,69409	liquid	-							
25	65	0,86017	1,1626	supercritical	25	60	1,4515	0,68894	liquid								
25	70	1,3023	0,76787	supercritical	25	65	1,4616	0,6842	liquid	· 0	0			50	100		150
25	75	1,5007	0,66638	supercritical	25	70	1,471	0,67981	liquid	-					sure (atm)		

Рисунок 4 – Сравнение зависимостей плотностей газов ксенона (Xe) и гексафторида серы (SF6) от их термодинамических параметров.

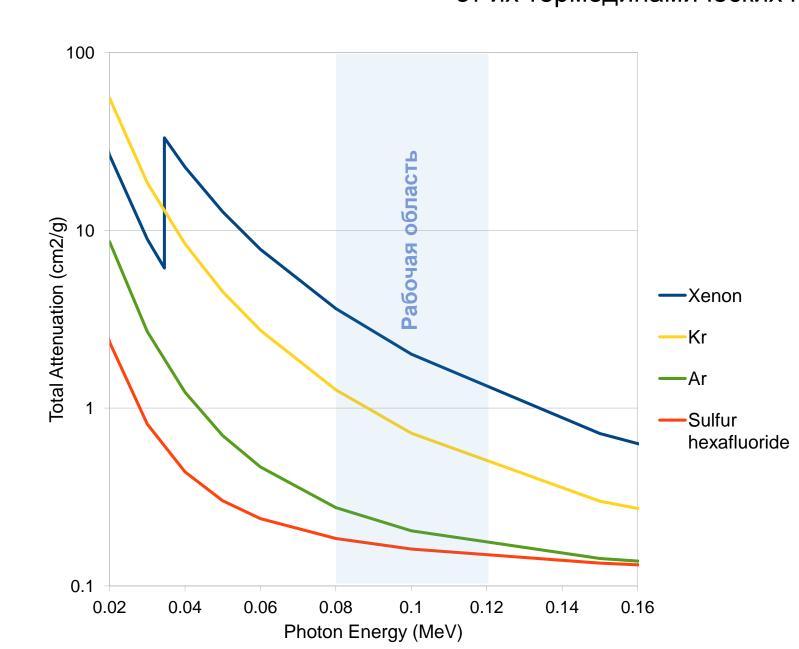


Рисунок 5 – Логарифмический график зависимости поглощающей способности различных газов от энергии фотонов.

Из-за наличия наибольшего количества атомов ксенон примерно в 4 раза эффективнее поглощает рентгеновские лучи, чем криптон, и в 30 раз эффективнее, чем аргон, в рабочем диапазоне энергий фотонов от 80 до 120 кЭв (рис. 5).

Формула ослабления интенсивности рентгеновских лучей в зависимости от плотности вещества имеет вид:

$$I_m = I_0 e^{-\mu_m m}, \qquad (1)$$

где I_m — степень ослабления интенсивности пучка после прохождения вещества; I_0 — степень ослабления интенсивности пучка до прохождения вещества; m — поверхностная плотность, $\Gamma/\text{см}^2$; массовый коэффициент ослабления имеет размерность $[\mu_m] = \text{см}^2/\Gamma$;

Формула ослабления интенсивности рентгеновских лучей в зависимости от количества атомов вещества имеет вид:

$$I_n = I_0 e^{-\mu_a n}, \tag{2}$$

где I_n – степень ослабления интенсивности пучка после прохождения вещества; I_0 – степень ослабления интенсивности пучка до прохождения вещества; μ_a – коэффициент пропорциональности, называемый атомным коэффициентом ослабления, см 2 ; n – число атомов, приходящихся на единицу площади поглощающего слоя.

РЕЗУЛЬТАТЫ РАЗРАБОТКИ

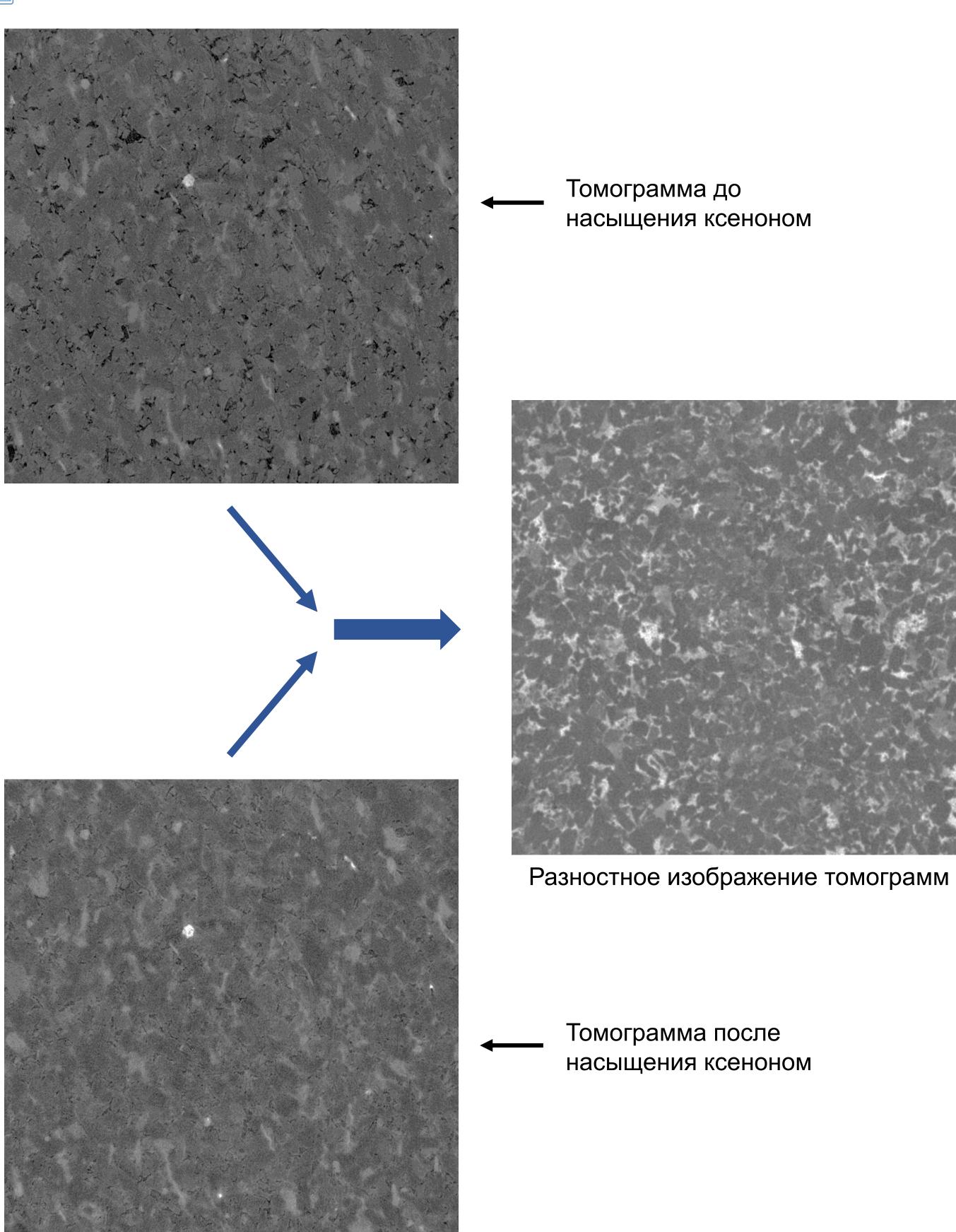


Рисунок 6 — Определение порового пространства низкопроницаемого керна с использованием рентгеноконтрастного газа ксенона.

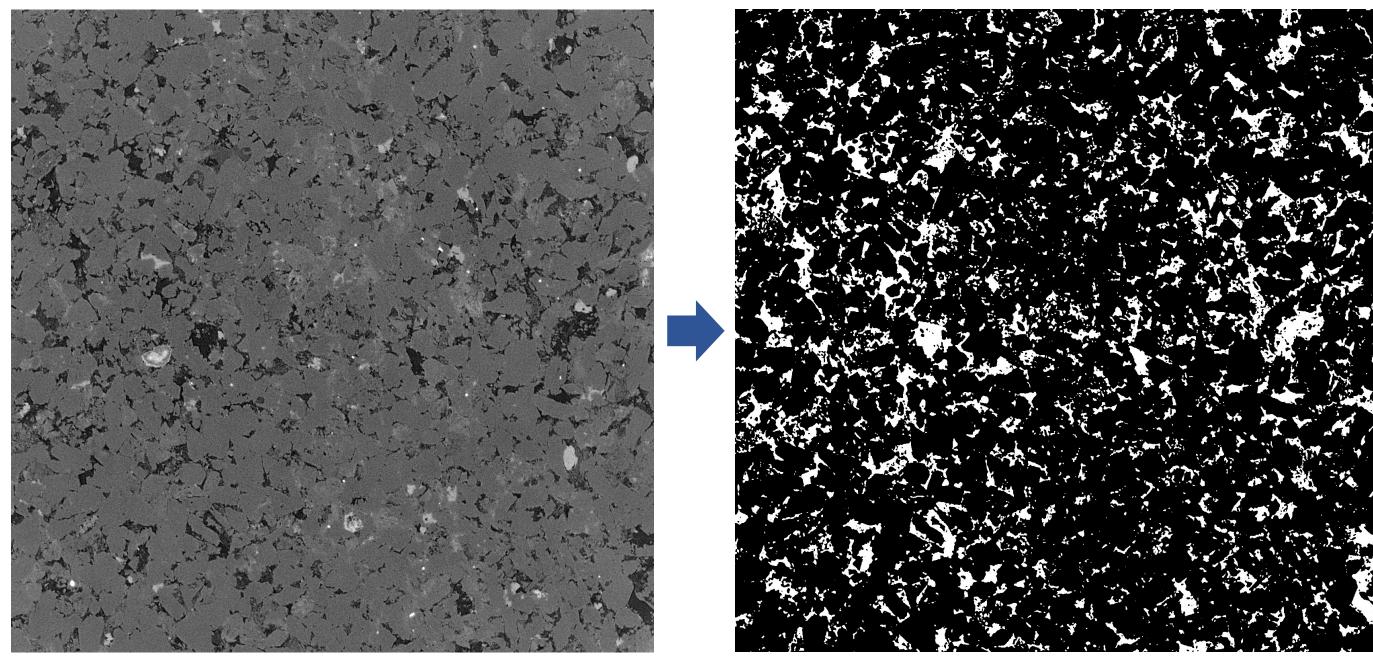


Рисунок 7 – Пример определения порового пространства пороговой бинаризацией.

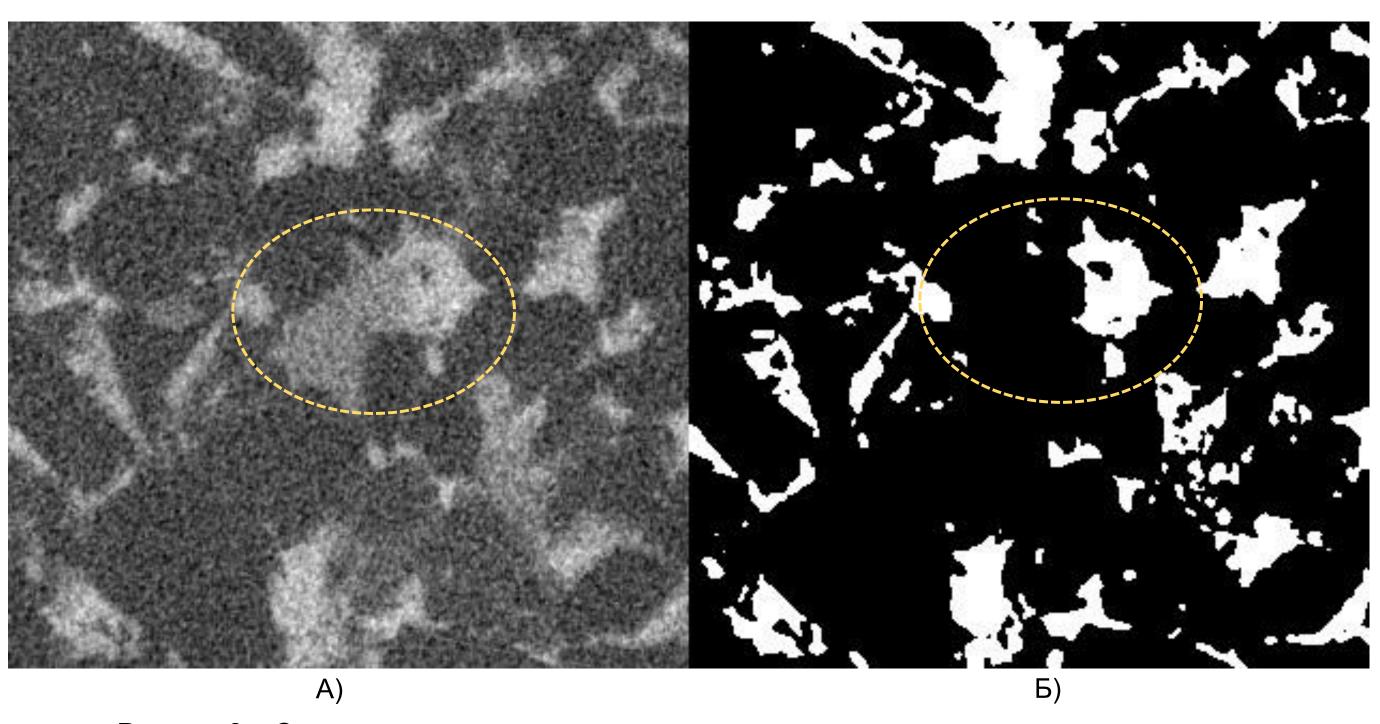


Рисунок 8 — Сравнение методов определения порового пространства: метода сканирования с контрастом (А) и методом пороговой бинаризацией (Б).

Данная разработка позволяет визуализировать неразрешаемую пористость – поры, размеры которых сопоставимы или меньше размера одного вокселя, – что, в свою очередь, повышает точность определения эффективной пористости на низкопроницаемых породах-коллекторов. С помощью представленной разработки возможно строить более качественные цифровые модели керна, для прогнозирования запасов УВ в пласте, снижения финансовых затрат при поиске и разработке залежей нефти и, в целом, для оптимизации всего процесса нефтегазодобычи.

