СПОСОБ ОПРЕДЕЛЕНИЯ ВОКСЕЛЬНОГО И СУБВОКСЕЛЬНОГО ПОРОВОГО ПРОСТРАНСТВА МЕТОДОМ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С КОНТРАСТОМ

Евсеев Федор Александрович; Иванов Иван Александрович

Научно-аналитический центр рационального недропользования им. В.И. Шпильмана, г. Ханты-Мансийск E-mail: fedor_evseev@rambler.ru

У ЧЕРТЕЖИ И СХЕМЫ

5

В РЕЗУЛЬТАТЫ РАЗРАБОТКИ

Томограмма до насыщения ксеноном

Рисунок 1 – Пример чертежа барокамеры, рассчитанный под диаметр образцов до 4 мм.

Система (рис. 2) включает в себя газовый баллон (1), в котором под давлением содержится рентгеноконтрастный газ, например, ксенон, расположенные последовательно два компрессора: низкого и высокого давления (3), вакуумный насос (6) и нагревательные элементы (7), использующиеся для удаления воздуха и влаги из внутренней среды измерительной ячейки (8), в которую помещается анализируемый образец геологического происхождения (10). Система дополняется манометрами (2), трехходовыми кранами (4), вакуумметром (5), и связующими всю систему медными трубками с внутренним диаметром 1 мм (9), по которым циркулирует газ.

Миниатюрность моделей и простота механизмов подсоединения позволяют удобно разместить барокамеры в томографе, не препятствуя процессу сканирования.

Рисунок 2 – Схема системы рекуперации отработанного рентгеноконтрастного газа.

Рисунок 3— Схемы элементов подсоединения «барокамера-томограф-ксенон»: с рекуперацией (А) и без рекуперации (Б) рентгеноконтрастного газа.

Разностное изображение томограмм

Томограмма после насыщения ксеноном

РЕНТГЕНОКОНТРАСТНЫЕ ГАЗЫ

Xenon (Xe)					Sulfur hexafluoride (SF6)														
Temperatur e (C)	Pressure (atm)	Density (g/ml)	Volume (ml/g)	Phase	Temperat ure (C)	Pressure (atm)	Density (g/ml)	Volume (ml/g)	Phase	-			—>	Kenon	—Su	ılfur hex	afluoride		
25	0	0	infinite	vapor	25	0	0	infinite	vapor	-									
25	5	0,027573	36,267	vapor	25	5	0,031716	31,53	vapor	- 4	2								•
25	10	0,05678	17,612	vapor	25	10	0,068185	14,666	vapor	-									
25	15	0,087894	11,377	vapor	25	15	0,11198	8,9305	vapor	-									
25	20	0,12127	8,2462	vapor	25	20	0,1692	5,9103	vapor	1.	5					-			-
25	25	0,15737	6,3546	vapor	25	23,326	0,2244	4,4562	vapor	Ê									
25	30	0,19682	5,0808	vapor	25	23,326	1,3402	0,74616	liquid	g/n/g)									
25	35	0,24053	4,1576	vapor	25	25	1,3482	0,74173	liquid	sity									
25	40	0,28981	3,4506	vapor	25	30	1,3691	0,73038	liquid	Jens	1								
25	45	0,34675	2,8839	vapor	25	35	1,3869	0,72102	liquid										
25	50	0,41501	2,4096	vapor	25	40	1,4025	0,71301	liquid	-									
25	55	0,50185	1,9926	vapor	25	45	1,4164	0,70599	liquid	0.	5	_			/				
25	60	0,6257	1,5982	vapor	25	50	1,4291	0,69974	liquid	-									
25	60	0,6257	1,5982	supercritical	25	55	1,4407	0,69409	liquid	-									
25	65	0,86017	1,1626	supercritical	25	60	1,4515	0,68894	liquid	-									
25	70	1,3023	0,76787	supercritical	25	65	1,4616	0,6842	liquid	- (0			50			100	1	50
25	75	1,5007	0,66638	supercritical	25	70	1,471	0,67981	liquid	-					Press	ure (atr	n)		

Рисунок 4 – Сравнение зависимостей плотностей газов ксенона (Xe) и гексафторида серы (SF6) от их термодинамических параметров.

Из-за наличия наибольшего количества атомов ксенон примерно в 4 раза эффективнее поглощает рентгеновские лучи, чем криптон, и в 30 раз эффективнее, чем аргон, в рабочем диапазоне энергий фотонов от 80 до 120 кЭв (рис. 5).

Формула ослабления интенсивности рентгеновских лучей в зависимости от

Рисунок 7 – Пример определения порового пространства пороговой бинаризацией.

Рисунок 5 – Логарифмический график зависимости поглощающей способности различных газов от энергии фотонов.

плотности вещества имеет вид:

$$I_m = I_0 e^{-\mu_m m}, \qquad (1)$$

ослабления степень где пучка интенсивности после прохождения вещества; І₀ – степень ослабления интенсивности пучка до прохождения вещества; m - Γ/CM^2 ; поверхностная плотность, массовый коэффициент ослабления имеет размерность $[\mu_m] = c M^2 / \Gamma;$

Формула ослабления интенсивности рентгеновских лучей в зависимости от количества атомов вещества имеет вид:

$$I_n = I_0 e^{-\mu_a n},\tag{2}$$

где I_n – степень ослабления интенсивности пучка после прохождения вещества; I_0 – степень ослабления интенсивности пучка до прохождения вещества; μ_a – коэффициент пропорциональности, называемый атомным коэффициентом ослабления, см²; n – число атомов, приходящихся на единицу площади поглощающего слоя.

Рисунок 8 – Сравнение методов определения порового пространства: метода сканирования с контрастом (A) и методом пороговой бинаризацией (Б).

Данная разработка позволяет визуализировать неразрешаемую пористость – поры, размеры которых сопоставимы или меньше размера одного вокселя, – что, в свою очередь, повышает точность определения эффективной пористости на низкопроницаемых породах-коллекторов. С помощью представленной разработки возможно строить более качественные цифровые модели керна, для прогнозирования запасов УВ в пласте, снижения финансовых затрат при поиске и разработке залежей нефти и, в целом, для оптимизации всего процесса нефтегазодобычи.

